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Abstract—The publish-subscribe paradigm is an efficient com-
munication scheme with strong decoupling between the nodes,
that is especially fit for large-scale deployments. It adapts natively
to very dynamic settings and it is used in a diversity of real-world
scenarios, including finance, smart cities, medical environments,
or IoT sensors. Several of the mentioned application scenarios
require increasingly stringent security guarantees due to the
sensitive nature of the exchanged messages as well as the
privacy demands of the clients/stakeholders/receivers. MQTT
is a lightweight topic-based publish-subscribe protocol popular
in edge and IoT settings, a de-facto standard widely adopted
nowadays by the industry and researchers. However, MQTT
brokers must process data in clear, hence exposing a large attack
surface. This paper presents MQT-TZ, a secure MQTT broker
leveraging ARM TRUSTZONE, a trusted execution environment
(TEE) commonly found even on inexpensive devices largely
available on the market (such as Raspberry Pi units). We define
a mutual TLS-based handshake and a two-layer encryption for
end-to-end security using the TEE as a trusted proxy. The
experimental evaluation of our fully implemented prototype with
micro-, macro-benchmarks, as well as with real-world industrial
workloads from a MedTech use-case, highlights several trade-
offs using TRUSTZONE TEE. We report several lessons learned
while building and evaluating our system. We release MQT-TZ
as open-source.

I. INTRODUCTION

The Internet of Things (IoT) is an increasingly popular
environment to deploy all kind of data sensors, gather the
produced data, and process it. Examples include live heart-
rate data [48], smart-grids [31], or infrastructure management
systems [33]. The scale of IoT deployments is expected to
grow exponentially in the next decade, with each individual
to own and control several connected things [55]. Efficient
communication between the things is hence of paramount
importance.

One scalable and flexible communication pattern, com-
monly adopted by IoT deployers, is the publish-subscribe
paradigm. Specifically, a prominent choice in pub-sub
IoT contexts is the Message Queuing Telemetry Transport
(MQTT) [28], a topic-based [13] publish-subscribe proto-
col [23] designed for environments with limited memory and
reduced network bandwidth. In a nutshell, a client publishes
data to a topic (e.g., soccer, art, etc), while a set of bro-
kers forward it to the nodes subscribed to that topic. Some
deployments, including the ones that motivated our work
(§III) operate in sensitive environments, for which the topics,
the subscriptions, or the messages being routed require high
security guarantees. Most MQTT implementations support
TLS [21] for transport-level security in the client-broker link,
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Fig. 1. Sales of chips containing ARM cores since 1997. We use filled curves
with the cumulative value, and highlight the years when earlier TRUSTZONE
versions were introduced. The current MQT-TZ can be deployed on ARM-v8-
A chips, introduced in 2013.

preventing malicious actors from spoofing application data.
However, the brokers still expose a great attack surface [53].
In particular, a powerful attacker with physical access to the
broker node can intercept and tamper with all inbound and
outbound traffic.

While software-based solutions could partially mitigate the
risks of such attacks, for instance exploiting homomorphic en-
cryption (HE) [56], the overhead that such solutions introduce
in the systems is still unpractical, i.e. nowadays still several
orders of magnitude slower [26].

Trusted execution environments (TEEs) are hardware-based
security mechanisms that shield code and data on compro-
mised systems. Examples include Intel Software Guard Ex-
tensions (SGX) [18], AMD Secure Encrypted Virtualization
(SEV) [29] for server-grade processors, and ARM TRUST-
ZONE [6, 38, 41] for edge-based processors.

ARM [7] is a IoT leading manufacturer of IoT, from
embedded devices to cloud appliances, as well as cloud-at-the-
edge solutions. It was estimated [51] that by 2035 ARM will
reach a trillion cumulative IoT devices shipped, with yearly
sales of chips in the hundreds of billions, and trillion dollars
annual spendings [9]. The adoption of ARM chips in the
consumer market continues to grow (Figure 1). The support of
ARM TRUSTZONE across all their processors makes security
become a commodity rather than an additional feature.

TRUSTZONE is an edge-based TEE that enables system-
wide hardware isolation against privileged processes or even
malicious operating systems (i.e., compromised kernel or
kernel modules), without the overhead of software-oriented
solutions, such as the previously mentioned HE. It is widely
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available on billions of consumer-grade devices (see Figure 1),
most of the time for IoT applications. For instance, the Rasp-
berry Pi 3 Model B/B+ is a low-cost unit largely available in
the consumer market. It embeds a Cortex-A53 ARM CPU core
with native support to TRUSTZONE. Additionally, TRUST-
ZONE is easily accessible for prototyping via virtualization
tools such as QEMU [14]. These reasons consolidate ARM
TRUSTZONE’s position to be the ideal tool to enhance the
security guarantees of existing IoT pipelines which, most
likely, already run on TRUSTZONE-compatible hardware.

This practical experience report presents the motivation, de-
sign, implementation, evaluation, and the lessons learned while
building MQT-TZ, a secure edge-based publish/subscribe mid-
dleware leveraging MQTT and ARM TRUSTZONE protecting
IoT systems against a variety of attacks. The MQT-TZ broker
exploits TRUSTZONE’s tamper-proof secure storage to store
clients’ keys (i.e., publishers and subscribers) upon a success-
ful handshake phase. Authenticating the data publisher is not
only beneficial for a trustworthy end-to-end communication,
but could also be used as a digital signature when connecting
a storage back-end to our secure broker. Additionally, the
re-encryption of the data—decrypting with the publisher key
and encrypting with the subscriber’s one—happens within the
memory-protected TRUSTZONE, protecting against memory-
dumps. As detailed later (§V-B), we built MQT-TZ’s messag-
ing broker on top of mosquitto, the standard de facto MQTT
implementation.

In summary, our contributions are as follows:
• after describing our motivating scenarios from real-world

settings (§III), we generalize and describe the deployment
scenarios (see §IV) for which a secure edge-based pub/sub
middleware is meaningful;

• we describe how we protect these industrial scenarios
against a powerful attacker with the available hardware, min-
imal additional software, and no changes to the application
code running at the edge;

• we provide insights regarding our open-source implemen-
tation of such design. In particular, we describe a novel
caching mechanism that combines TRUSTZONE trusted ap-
plication memory and persistent storage;

• we provide an in-depth evaluation of our system with real-
world workloads, with the intent to highlight the perfor-
mance trade-offs of MQT-TZ.

The transparency with regard to the deployer, both in terms
of hardware and application compatibility, whilst adding pro-
tection for a variety of security vulnerabilities is, to the best
of our knowledge, novel in the IoT/edge-processing field, and
a main novelty of MQT-TZ itself.

The rest of the work is organized as follows. We introduce
some preliminary concepts on MQTT and TRUSTZONE in §II,
describe our motivating scenarios in §III, and the correspond-
ing generalized deployment settings for which MQT-TZ is
most relevant in §IV. The architecture and implementation
details in described in §V. We present our experimental
results in §VI. Finally, we cover related work (§VII) and our

lessons learned (§VIII) before presenting our future work and
concluding in §IX.

II. BACKGROUND

This section presents the technological building blocks
that we leverage in MQT-TZ. Namely, we introduce MQTT,
mosquitto, as well as OP-TEE, our framework and runtime
of choice. Finally, we describe TRUSTZONE in a nutshell, the
TEE environment available for ARM processors, to which OP-
TEE offers native access.

MQTT & mosquitto. The Message Queuing Teleme-
try Transport protocol (MQTT) is a lightweight client and
server topic-based publish/subscribe messaging transport pro-
tocol [28, 60]. It is specially suited for constrained environ-
ments (e.g., IoT) where memory and bandwidth are very scarce
resources. In the protocol, a client publishes a message to
a topic. Dedicated processes (i.e., the brokers) forward it to
every subscriber for that same topic. The protocol supports
decentralized deployments, in which brokers are organized in
a layout and messages are routed and forwarded along the
established routing tree. The de facto standard open-source
C-based implementation of MQTT is mosquitto, actively
maintained by the Eclipse Foundation [54]. We implement
MQT-TZ atop mosquitto and introduces additional security
guarantees leveraging ARM TRUSTZONE, as described next.

TRUSTZONE & OP-TEE. TRUSTZONE [1] is a feature
implemented in ARM processors since Arm1176JZ-S (2004).
It implements a trusted execution environment that is primar-
ily used to guarantee system-wide hardware isolation. Data
and code are shielded from compromised environments. The
TRUSTZONE architecture physically separates the device in
two distinct execution environments, i.e., the trusted side (TEE
- secure world) and the untrusted side, i.e., Rich Execution
Environment REE or normal world [6]. TRUSTZONE shields
against an attacker with physical access to the device, as well
as higher-privileged software or malicious kernels running in
the REE. The former hosts the so-called Trusted Applications
(TAs). Trusted applications can leverage additional TRUST-
ZONE-only services, such as tamper-proof persistent storage
via specialized APIs. The integrity of a TRUSTZONE-enabled
device can be guaranteed by a secure boot mechanism.1 Its root
of trust builds on Hardware Unique Keys (HUK) embedded
in the processor during manufacturing. A common assumption
is that only trustworthy TAs are deployed inside the secure
world. The Open Portable Trusted Execution Environment
(OP-TEE) [36] is an open-source runtime for TEE applications
sponsored by the Linaro Foundation [4] with native support
for TRUSTZONE. It is designed to run together with a non-
secure Linux kernel in the REE. Finally, OP-TEE is compliant
with the GlobalPlatform’s specifications [25].

III. MOTIVATING SCENARIOS

In this section, we describe our two main real-world scenar-
ios behind MQT-TZ, both depicted in Figure 2. The use-cases

1While beneficial, we did not leverage secure boot to build MQT-TZ since
our Raspberry Pi 3 Model B devices do not support it.
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Fig. 2. Our two motivating scenarios: smart building management and
vital signs monitoring (MedTech). The figure shows the interaction of the
various actors with the MQTT publish-subscribe middleware as well where
the identified attack vectors can be launched (§IV).

originate from two on-going research projects, in collaboration
with industry-leading companies. The security vulnerabilities
exposed in the following and that we tackle in the reminder
are both realistic, and believed to be currently exploitable at
the moment. In particular, the security and privacy concerns
present in both cases are similar and can be attributed to:

• the exposure of the MQTT broker to attackers at the edge,
both from attackers with physical access (on the field) to
the devices, or by means of privileged malicious software
running in the same node;

• the lack of authentication and authorization in the com-
munication channel;

• the lack of transport and application layer protection;

A. Smart Building Management

The first scenario stems from TABEDE2, an EU H2020
project with the aim to integrate energy grid demand-response
schemes into buildings through low-cost extenders for Build-
ing Management Systems or as a standalone system, which
is independent of communication standards and integrate in-
novative flexibility algorithms. The project targets the control
of building mechanical and electrical equipment and services
such as air conditioning, ventilation, and security systems.

From the architectural perspective, the overall system can be
summarized on three key parts: (1) several in-house smart sen-
sors implementing a large variety of communication protocols
(e.g. EnOcean [34], KNX [32], Zigbee [24]); (2) a back-end
managed by a third-party (e.g., an untrusted cloud provider)
where the data is streamed and stored in real time; and (3) a
web-based front-end that visualizes and manages the network
of in-house sensors.

The flow of information relies on MQTT brokers deployed
at the edge to minimize latency and limits the physical access
from untrusted entities. However, it directly raises several
privacy and security concerns. In particular, the energy read-
ings of an ensemble of buildings represent vital information
required for the energy-balancing load algorithms that manage

2https://www.tabede.eu/

the internal power grid. If the readings are tampered with,
even by a small amount, the grid could suffer local overloads.
This method could be used to deliberately attack a building by
overloading its grid (or even worse, if the attack is launched
at a national scale [2]). Finally, in terms of privacy concerns,
energy consumption reveals details about the habits and be-
haviors of individuals inside their private homes. Therefore,
smart metering has to compromise between detailed energy
metering and privacy protection [19, 39]. This use-case helps
us identifying the following open questions:
Q1: What if an attacker impersonates the power meter and
sends erroneous power readings to the grid?

Q2: What if an attacker compromise the smart-light or smart-
lock communication with the MQTT broker?
B. MedTech for Vital Sings Monitoring

In the context of medical technologies (MedTech), the mon-
itoring of vital signs is increasingly off-loaded and outsourced
to third-party untrusted data centers. The main reason is to
exploit the economy of scale that comes with cloud computing.
However, recent data protection regulations (e.g., GDPR [58])
have stressed the importance of ownership of the data and
limited the scope of its use. Much research has been recently
devoted to deal with such restrictions and on how to reconcile
distributed systems with such legislation frameworks [16]. For
instance, [49] showed that it is possible to deploy real time-
processing of heart-rate variability (HRV, linked to physiolog-
ical and mental stress [17, 52]) by exploiting Intel SGX TEE
enclaves with reasonable overheads. However, the platform
must deal with a large diversity of physiological and behav-
ioral signals originating from wearable sensors [20, 46] such
as electrocardiograms (ECG), electroencephalograms (EEG),
or photoplethysmographams (PPG).

In this scenario, the flow of information is typically medi-
ated by MQTT brokers. More precisely, ECGs and other key
signal features are sent to remote MQTT brokers for further
processing like HRV monitoring and arrhythmia detection.
Locating them at the edge of the network, rather than the
cloud, guarantees that data ownership is not transferred, hence
easing compliance with data protection regulations. If a health
anomaly is detected, an alarm is relayed through an MQTT
topic to which a particular doctor or emergency services
is subscribed. This architecture raises similar privacy and
security concerns as the smart building scenario (§III-A) since,
vital signs, and in particular HRV signals, are very sensitive
data as well.

Moreover, as our healthcare systems quickly transition to-
wards personalized medicine [27], an erroneous diagnosis gen-
erated by tampered health data could result in life-threatening
situations. On the privacy side, read access to this health data
can be used by third parties for user profiling, which may be
used by health insurance companies to raise premiums from
the leaked information.
Q3: What if an attacker deliberately push data to one
patient’s HRV topic, invalidating all the further monitoring?

3

https://www.tabede.eu/


This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

Q4: What if an attacker compromise the medical broker to
tamper packets routed to the emergency topic?

IV. DEPLOYMENT SCENARIO & THREAT MODEL

From the described use-cases, we characterize our deploy-
ment scenarios used to design MQT-TZ. This section also
describes the targeted threat model, as well as to clearly
identify various attack vectors (AV) form which MQT-TZ
shields against.

Deployment Scenario. We envision a deployment scenario
consisted of a large set of low-powered, memory-constrained
client and server nodes.

Client nodes continuously publish live monitoring data in a
streaming fashion. These nodes can typically sustain a steady
network throughput of hundreds of bytes per second. For
instance, a publisher streaming an ECG will send at most 350
Bytes/s, and a full fleet of publishers (e.g., a floor in a hospital)
will amount to around 3-5 kBytes per second (see §VI).

Server nodes in the system are placed at the edge. This
choice maximizes responsiveness (minimizing latency), re-
duces the attack surface, and avoids the transferring of data
ownership. They receive such data to process, for instance
performing aggregation, averaging, or detecting statistical de-
viations. Increasingly common in IoT deployments—given its
reduced costs, high availability in the market, popularity across
developers, and hardware features—we deploy our brokers
over Raspberry Pi 3 Model B units (see §VI-C). Conveniently,
this device embeds an ARM Cortex-A processor with native
support for TRUSTZONE. The deployment scenario includes
storage services in charge of collecting data to be processed
offline at a later time.

Threat Model. Figure 2 depicts the potential threats that
we consider in our deployment scenario, including the several
attack vectors at disposal of an attacker. Note that these are
not flaws in the MQTT protocol per se as they may be out of
scope (e.g., transport layer security). We highlight flaws in the
way these tools and protocols are used in industrial settings.

First, most IoT settings leveraging MQTT bypass client or
broker authentication (AV-1). As a consequence, unauthorized
parties can publish data to the brokers as long as their
address is known. Similarly, attackers might try to impersonate
brokers.

Second, they do not encrypt data packets before transmis-
sion. As a consequence, an attacker with the ability to intercept
or spoof the client-broker link would gain access and tamper
all the information processed by the broker (AV-2).

Third, edge-based pub/sub middleware usually lacks any
mechanism of access control, e.g., the topics are public. An
attacker with knowledge of the publish/subscribe topics could
inject carefully crafted information while receiving potentially
sensitive data sent by the clients (AV-3). By leveraging access
control mechanisms, we can also revoke access to byzantine
nodes, hence providing a simple defense mechanism against
replay attacks towards the broker.

Lastly, the mosquitto MQTT brokers run by default
as non-privileged processes. This exposes brokers to higher
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Fig. 3. MQT-TZ architecture and flow of operations.

privileged processes running in the same node (e.g., in the
form of malware as these brokers tend to be connected to the
internet), malicious users (e.g., with SSH access to the node),
or even malicious operating systems loaded by an advanced
attacker at boot time. For instance, a high-privilege process
running on the same broker machine could intercept all its
incoming and outgoing traffic, tampering with the data it
processes. Note also that even when the client-broker link
is encrypted (e.g., via TLS channels), processing data in
clear at the broker constitutes a privacy and security risk
(AV-4). To protect against an attacker patching our broker,
or rebooting with a different implementation which could
trick the untrusted code to authenticate malicious clients, we
measure the REE code base at secure-boot time.

When compared to lightweight cryptographic-based
schemes implementing device authentication and access
control mechanisms, MQT-TZ offers the additional in-broker
security guarantees which stem from the usage TRUSTZONE.

We consider a powerful attacker with administrative rights
as well as physical access to the broker node, and with the
ability to exploit any of the listed attack vectors. However,
we assume the client to not be compromised. While we are
aware of recent TRUSTZONE side-channel attacks [45, 47], we
consider those out-of-the-scope of this work. In particular, we
assume that the client’s cryptographic credentials (see further
details in §V) cannot be extracted.

V. THE MQT-TZ SYSTEM

This section presents the architecture and the interaction
of the various MQT-TZ components, providing additional
implementation details, as well as explaining how the open
questions given in §III are addressed.

A. Architecture & Component Description

The architecture of MQT-TZ is presented in Figure 3.
We extend the mosquitto MQTT broker to ARM TRUST-
ZONE. Specifically, MQT-TZ’s broker adds an encryption layer
in MQTT’s payload using client-specific keys stored inside
ARM’s secure storage [37]. Doing so, application data is only
processed inside the TEE, where it gets re-encrypted. For
the additional key-provisioning to address AV1 and AV2, we
redefine the client authentication in the mutual TLS handshake
to prevent the REE from gaining access to clients’ keys. We
also leverage Access Control Lists (ACLs) for fine-grained

4
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control over the users and their topics. We now detail the
various architecture components and their mutual interaction.

Note that MQT-TZ does not modify nor redefine TLS or
the vanilla MQTT protocol. We leverage—and modify when
needed—existing implementations of these protocols to shield
our deployment scenario from possible attacks (§IV), with the
minimum performance penalty, as shown next.

Two-Step Handshake. MQT-TZ defines and uses a two-
step handshake that realizes broker and client authentication
with end-to-end encryption from the client to the TEE. The
handshake protocol requires minimal pre-provisioned crypto-
graphic material.
A1: mutual authentication prevents from either broker or
client impersonation.

The broker authentication (Figure 4, top) relies on TLS
handshake, supported by default in mosquitto, while the
corresponding client step (Figure 4, bottom) uses MQTT.
We choose the latter over TLS’s client side authentication
to ensure that client’s data is only processed in clear inside
the TEE. Alternatively, we would need to install a full TLS
endpoint inside TRUSTZONE, leading to a very large attack
surface as code in the TEE needs to be trusted.

First, the client publishes its symmetric key, encrypted with
the broker’s TEE public key, to a dedicated write-only topic.
This TEE key pair is generated at device start-up time (secure
boot) and derived from a Hardware Unique Key (HUK). As
a consequence, the private key never leaves the TRUSTZONE.
Note that secure boot and HUKs are device-specific, hence the
exact mechanism depends on the system on which MQT-TZ is
deployed. The encrypted payload is then securely transferred
to the TRUSTZONE TEE and decrypted. The client’s key is
stored in the secure storage (SS in Figure 4, bottom). An ACK
reply is encrypted with this same symmetric key and sent back
to the REE, which can forward to the client to finalize the
handshake.
A2: TLS protects the communication link and prevents mali-
cious packet interception and man-in-the-middle attacks.

Layered Encryption & Access Control Mechanisms.
After the handshake, MQT-TZ uses a two-layer encryption
mechanism. First, the client-broker link is protected by TLS
within mosquitto. Second, MQTT’s payload is encrypted
using the clients’ symmetric key. Then, data is re-encrypted
in the TEE (as detailed next) and sent to its destination over
a mosquitto-TLS channel. Doing so, we achieve end-to-
end security relying on TRUSTZONE as a secure proxy. We
also leverage Access Control Lists to limit the clients able
to interact with the broker. These are currently stored in the
REE, but if clients are defined in advance, its contents could
be measured during boot and stored also in SS, preventing an
attacker from tampering with the lists.
A3: ACLs prevent unauthorized entities to inject or subscribe
to sensitive topics, and enable revoking access to clients
controlled by attackers.

Payload Re-encryption. We link mosquitto with a
trusted application that transfers the encrypted data to TRUST-
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Fig. 4. MQT-TZ: broker (above) and client (below) authentication.

ZONE’s secure world, where it retrieves the origin and destina-
tion keys from secure storage, and re-encrypts the information.
Currently, topic subscription lists and MQTT metadata are
stored in a dedicated database (MQTT DB) in the REE.
We plan on shadowing these structures to keep them in the
TEE since information like subscription patterns, subscriber
distribution, or topic filtering can be used as a side-channel to
leak sensitive data.
A4: The re-encryption of information inside TRUSTZONE
prevents a physical attacker or privileged process from spoof-
ing sensitive information.

LRU Cache in the TEE. Our evaluation (§VI) shows that
retrieving the keys from secure storage is the most expensive
operation when re-encrypting application data in the TEE. To
mitigate this behavior, MQT-TZ embeds a lightweight LRU
cache in the TEE that keeps the most recently used keys in the
TA’s heap memory, and evicts the least used ones (LRU policy)
to persistent secure storage. Access to the heap’s content is
also hardware-protected by TRUSTZONE.

Dataflow. In a nutshell, data in MQT-TZ flows as follows.
Data travels two-fold encrypted from the client to the broker
(Fig.3-Ê). Once the client access is confirmed (Fig.3-Ë), the
subscribers for the given topic are retrieved and the payload
forwarded (Fig.3-Ì). Then, encrypted data is transferred to
the TEE (Fig.3-Í). The origin and destination client keys are
retrieved (Î-Ð). The payload is re-encrypted and sent back to
the REE (Fig.3-Ñ) and to the subscriber (Fig.3-Ò).

B. Implementation Details

MQT-TZ’s broker is implemented in C. The current version
of MQT-TZ adds 400 SLOC to mosquitto version 1.6.3
and the TA amounts to 1204 SLOC. The MQT-TZ TA relies
on OP-TEE, version 3.5.0. The MQT-TZ prototype will be
available from https://github.com/mqttz.

Client and Server Authentication. The server-side authen-
tication is done through vanilla TLS. We deploy MQT-TZ’s
secure broker in a device with a static IP address. Then, we
bound the address to a domain name and use a certificate.
We rely on Let’s Encrypt (https://letsencrypt.org/) to get one
and to authenticate the broker. The client-side authentication
uses MQTT as communication layer, and openssl (v1.1.1a)
for cryptographic tools. The integration with mosquitto ex-
ploits custom callbacks for each packet processing. In addition,
we use MQTT (v5.0) Request/Response (RR) features for the

5
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Fig. 5. Re-encryption TA microbenchmark. Percentage breakdown of the contributions of each operation in the time elapsed. For each different block size
(bottom axis) we compare: re-encryption in the REE vs TEE with the key stored in memory or persistent storage. We also report average total time (in ms)
boxed.

client’s key exchange. To control access and R/W permissions
to topics, we use mosquitto’s ACLs.

Trusted Application. We rely on OP-TEE APIs to im-
plement the payload re-encryption TA. Trusted applications
implemented within this framework have two parts: (1) a
host app that runs in the REE and acts as an entry point
and bridge to the TEE, and (2) a trusted API in the TEE
that exposes different functions. MQT-TZ intercepts all MQTT
packets forwarded to the recipients, and feeds our host app
with both client’s IDs and the encrypted data. Then, the
payload re-encryption happens, using OP-TEE’s storage and
cryptographic libraries. TRUSTZONE not only provides isola-
tion between worlds, but also between different TAs. Hence,
we use the same secure API to store new keys during the
handshake. For key retrieval, we implement a new LRU cache
in the TEE to store the most frequently used keys in the TA’s
heap, while the remaining ones are evicted and flushed in
persistent secure storage [37].

VI. EVALUATION

We present the experimental evaluation of the MQT-TZ
prototype using micro-benchmarks and macro-benchmarks, as
well as using real-world datasets from the MedTech scenario.
Our intent is to validate the design of MQT-TZ, the efficiency
of our implementation and to analyze the different trade-offs
that the system incurs.

Evaluation Settings. We use Raspberry Pi 3 Model B units,
one of the few where OP-TEE fully supports TRUSTZONE.3

We set up the CPU in powersave governor mode to mini-
mize energy consumption.

To validate the scalability of MQT-TZ, we also deploy a
fleet of virtualized nodes using QEMU-V84, as it faithfully
replicates the industrial settings planned for MQT-TZ. This
emulated environment closely matches the expected hardware
performance [6]. We use mosquitto (v1.6.3) and OP-TEE
(v3.5.0). Unless otherwise specified, messages are 4 kBytes

3https://optee.readthedocs.io/en/latest/building/devices/rpi3.html#
what-versions-of-raspberry-pi-will-work

4https://www.qemu.org/
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Fig. 6. Read time (CDF) from secure storage using MQT-TZ’s secure cache
for different numbers of cached objects. The cache capacity grows from 10%
up to 100% of the total objects. Dashed lines represent hardware results and
bold lines emulated ones.

and are encrypted with 32-Byte keys. We always report
average and standard deviation results for 100 executions of
the described configurations. The default size of the messages
reflects the setting presented in §VI-C.

A. Micro-benchmarks

Re-Encryption TA. We begin by measuring the time re-
quired to re-encrypt a block of data inside or outside the
TEE, one of MQT-TZ’s cornerstone operations. We include
results for the hardware and the emulated environment using
the powersave CPU governor, as it most closely matches the
expected deployment settings. We breakdown these measures
into four main components: the time it takes to retrieve each
key (retrieve_dec_key, retriev_enc_key), and to
use them (encrypt, decrypt). On the x-axis, we show
results for different block sizes of data to re-encrypt, e.g.,
from 20 Bytes up to 20 kBytes. We compare the performance
of MQT-TZ decrypting inside the REE (left-side vertical bars)
or in the TEE (right-side bars). For encryption, we use AES
in CBC mode with 32-Byte keys. Finally, we include results
for the variants of the system that maintain the keys either in
volatile memory as well as in secure storage, and the overall
elapsed time (in ms) boxed. Figure 5 uses a stacked bar chart
representation to present these results.
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Fig. 7. Dissemination delays (CDF) for different MQTT implementations and
configurations of MQT-TZ. We highlight (boxed) the delay in ms for the 50th
percentile.

We observe that AES symmetric cryptography is two orders
of magnitude slower in the TEE, both in emulation and in
real hardware. For instance, for the 2kB case, we face a
slowdown of 128× and 250×, respectively. This is due to
the cryptographic libraries in OP-TEE not using hardware
accelerators (due to security restrictions) and hence not as
optimized as openssl used in the REE. Moreover, when
switching from in-memory to secure persistent storage, we
observe even higher slowdowns (i.e., up to 250× and 260× in
the 20 Bytes case), specifically in the time required to fetch
the decryption key. These results motivate the inclusion of a
LRU cache in MQT-TZ’s architecture, as described next.

The emulation results show slower memory access times,
but faster encryption both in the TEE and REE when com-
pared to real hardware. In spite of that, emulation closely
matches the time spent in each phase specially for the Key
in Volatile Memory Case. When the key is stored using the
Secure Storage API, QEMU overestimates the time to retrieve
both objects, and underestimates the time to encrypt them.
Therefore, emulation is useful for prototyping and early stages
of development, but to draw conclusions on performance one
must measure on the real hardware, under realistic workloads.
TEE Cache. To evaluate the performance of our LRU cache
inside TRUSTZONE, we issue get queries to fetch entries
from the cache. Figure 6 presents the cumulative distribution
function (CDF) of the delays to return and read the reply. To
execute this experiment, we initially preload a set of 128 256-
bits AES keys to secure storage, as this matches the expected
size of the system (both in terms of subscribers and publishers)
that MQT-TZ will support in real-world deployments. Then,
the cache is filled with keys randomly sampled from this set.
The number of entries in the cache varies between 12, 64, and
128 keys, i.e., 10%, 50%, and 100% of the total. The client
issues 128 random queries, and measure the average latency
over 100 runs for each configuration. Note that clock precision
for such in-TEE measurements is 1 ms.5 Hence, replies faster
than this threshold (e.g., as in the 100% case) are not reported.
As expected, smaller caches lead to more the cache misses
and higher average reading time. The median (50th percentile)
reading value for the 50% case is 155 ms, and up to 253.85 ms

5This is the default precision of the TEE_Time [35] offered by OP-TEE.
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Fig. 8. Impact of total subscribers per topic on the overall message
dissemination delays.

for the 10% scenario. These results indicate the LRU cache is
beneficial in all the tested scenarios.

When comparing hardware (dashed) with emulated (bold)
values, we observe that QEMU fails to emulate the object
storage and retrieval performance when the secure store is
relatively full (128 keys in our case). This is specially true
when using the powersave CPU governor mode [6].

B. Macro-benchmarks

To assess the overall performance of MQT-TZ, we measure
the dissemination delay (latency) for a MQT-TZ setup with
one single publisher and one single subscriber. We addition-
ally show a larger-scale deployment scaling up the number
of subscribers to the same topic. These benchmarks stress
the operations occurring the most inside TRUSTZONE, i.e.
encryption, decryption, and queries to the cache. Increasing
the number of publishers (instead of subscribers) would yield
the same number of cache queries, hence a symmetric effect
on performance.

1 Publisher - 1 Subscriber. This is a baseline deployment,
used to assess the dissemination delay performance. We com-
pare vanilla mosquitto against several variants of MQT-TZ:
(1) with re-encryption in the REE and all keys in memory, (2)
re-encryption in the TEE and all keys in memory, and (3)
all the features combined. Figure 7 reports the CDF of the
dissemination delays. As expected, an increasing number of
security features hurts the dissemination delays (up to 8× for
the median values), with a long tail up to 350 ms.

1 Publisher - Many Subscribers. Next, we scale up the
number of subscribers for a given topic. Figure 8 presents the
dissemination delays for two configurations (REE-Reenc. and
TEE-Reenc.) e.g., using re-encryption in the REE and TEE
respectively. We observe that the dissemination delays increase
linearly with the number of subscribers. Re-encryption in the
TEE (in general TA execution) being single-threaded, each
subscriber has to be handled individually. As a conclusion,
the biggest performance bottlenecks derive from the slow
cryptographic primitives and the key retrieval routines. For the
former, we rely on the primitives provided by OP-TEE. We
intend to exploit Cryptographic Accelerators for TRUSTZONE
(e.g. ARM CRYPTOISLAND [8]) to considerably speed-up
these operations. For the latter, we introduced an in-TEE cache
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Fig. 9. Distribution of network throughput for a realistic deployment with 50
publishers emitting real-world cardiac signals.

to minimize the queries to persistent storage. Another strategy
along this line would be to share one key among sets of clients
(if the application’s security concerns allowed to).

In terms of scalability, MQT-TZ is limited by the per-
subscriber re-encryption process. This process being single-
threaded (OP-TEE’s limitation), all clients are serialized. A
possible workaround would be to leverage mosquitto’s
multithreading capacities combined with multiple running con-
current TAs (not in-TA threading). However, this would incur
in higher CPU load and hence higher energy consumption,
a possible showstopper in some constrained environments.
Alternatively, establishing per-topic shared keys among client
nodes, the re-encryption for some packets could be avoided.
We intend to explore these options in future extensions of this
work.
C. MedTech in action

Finally, we fully implement and deploy the vital signs
monitoring scenario (§III-B). In this case, we are interested in
understanding if in a real-world setting the MQT-TZ broker
can efficiently (e.g., CPU processing) sustain the injected
workload. We leverage real-world ECG datasets we collected
on the field. This deployment reproduces the layout of an
hospital floor with 50 patients whose cardiac signals are
constantly monitored. For the sake of simplicity, these signals
are streamed toward one single MQT-TZ broker, although a
federated deployment is also supported. We capture and mea-
sure the outbound network traffic from each publisher using
nethogs [22]. Figure 9 depicts the outbound throughput
generated by each publisher in bytes per second. We use
a stacked percentile representation with shades of grey to
plot the minimum, 25th, the 50th (median), the 75th and the
maximum across all the publishers. We observe that at any
given time only a subset of the publishers actually emits data.
A single subscriber streams at 350 Bytes/s in the worst case,
and the full fleet of publishers generates between 3 to 5 kBytes
per second overall.

During the experiment, we use dstat [59] to record the
CPU load at the broker (see Figure 10). We report the results
for physical and virtualized environments, and against against
a vanilla mosquitto deployment for both scenarios. Both
in emulation and hardware, MQT-TZ adds between 10% to
15% to the CPU load on average, up at around 55% usage
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Fig. 10. MQT-TZ Broker CPU usage under the load from Figure 9.

in the worst case. It is worth noting how these values are
considerably higher in emulation than in HW, and the reduced
amount of CPU (∼ 1%) mosquitto requires. Overall, this
suggests low energy consumption, an important factor for
deployers that intend to deploy brokers in batter-powered
nodes.

VII. RELATED WORK

Few attempts exist to provide secure extensions for
MQTT [50], but none of them rely on TEEs. Despite, TEEs
(and in particular TRUSTZONE) are used in several differ-
ent domains, from cardiac signal processing over untrusted
clouds [48] to control-based TRUSTZONE policy framework
for air drones [57]. For the sake of conciseness, we shortly
review secure messaging libraries on top of TEEs, as well as
presenting a short survey of different usages of TEEs.

Secure Messaging Libraries Using TEEs. MQT-TZ lever-
ages the native support of MQTT to establish TLS channels
between the client and the broker. TaLoS [12] can establish
secure TLS termination inside Intel SGX enclaves. Deploying
a complete TLS stack inside the TEE is unnecessary in our
context, and it would yield a larger attack surface, as the code
loaded in the TRUSTZONE must be fully trusted.

PubSub-SGX [10] is a content-based publish/subscribe
framework on top of SCONE [11], a compilation tool chain to
securely run Linux containers inside SGX enclaves. PubSub-
SGX is implemented in Python. The notion of topic is a first-
class entity currently not supported by PubSub-SGX, making
its adoption for our scenarios requiring relevant engineering
efforts. Similar drawbacks exist in [43], a content-based rout-
ing mechanism for SGX on top of which privacy-preserving
pub/sub framework can be implemented.

StreamBox-TZ [40] is a secure stream analytics framework
for TRUSTZONE, specifically targeting telemetry data. Rather,
MQT-TZ focuses on secure end-to-end packet delivery, dele-
gating all the application-specific processing to client nodes.

TEE-Based Applications. Due to the additional security
guarantees and resilience to stronger adversarial models, TEEs
are currently being deployed across a plethora diverse sce-
narios. One important step for all the applications is the
attestation protocol, e.g., a process used by participants to
verity the integrity and validity of the trusted applications as
well as the CPU executing those. While Intel SGX has native
support for remote attestation [3], TRUSTZONE lacks clear
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specifications for it. Fides [44] presents a ready-to-use Key
attestation framework for Android’s TEE, and we intend to
look further into it. A common domain of application for TEEs
is web-based systems, as well as a common way for end-users
to disclose personal data. In this context, SGX can protect
the identity of the users against re-identification attacks via
browser extensions and privacy proxies [15, 42]. While MQT-
TZ targets scenarios where the identity of the users is not to
be hidden (rather, the opposite, as in our MedTech scenario), a
broker can indeed be compromised. Techniques such as SGX-
Tor [30] could be explored in the context of TRUSTZONE and
MQT-TZ to reduce the information shared with the brokers.

VIII. LESSONS LEARNED

Through the implementation, deployment and evaluation of
MQT-TZ we acquired insights into several aspects of such a
system. We highlight here the most important ones.

First, the OP-TEE framework is sufficiently mature to allow
rapid development cycles to quickly test with TRUSTZONE.
Trusted Applications, as our LRU cache in the TEE or the re-
encryption TA, can achieve performances close to the corre-
sponding non-secure ones. However, the crypto primitives they
provide are slower than expected, especially when compared
to other state-of-the-art libraries (i.e., OpenSSL [5]). Our
experimental results highlight a slowdown of up to two orders
of magnitude. We hope to mitigate these drawbacks exploit-
ing hardware support for TRUSTZONE-specific Cryptographic
Hardware Accelerators such as ARM CRYPTOISLAND [8].

Second, we have shown in our evaluation that the
mosquitto MQTT broker has a small CPU footprint. How-
ever, code executed in TRUSTZONE can only be single-
threaded, negatively affecting scalability. While leveraging
multi-threading in the broker is part of future work, this must
be carefully handled. In fact, we expect the increased CPU
usage to lead to higher memory consumption, as well as higher
energy requirements. In this sense, deployers should carefully
evaluate such trade-offs and decide on application-dependent
requirements.

Finally, we report how the emulation accuracy for ARM
processors in QEMU is sufficiently accurate to allow us to
validate the design and implementation without having to
deploy large (and potentially) expensive testbeds. Yet, as
shown in §VI, the timing measurements from QEMU can be
inaccurate, and real-hardware measurements must be planned.

IX. CONCLUSION AND FUTURE WORK

Motivated by the lack of secure-by-design communication
protocols for the edge and two real-world use-cases, we
built MQT-TZ, a secure edge-based publish/subscribe mid-
dleware using MQTT and TRUSTZONE. We report on our
experiences while building and evaluating our open-source
prototype against a vanilla MQTT under real-world workloads.
Despite the measured slowdown (up to 8× in some scenarios),
our system scales and can be deployed in restricted, IoT-
based settings, achieving dissemination delays in the orders
of milliseconds, even when deployed in low-end devices

(such as Raspberry Pi units). In addition, the motivating use-
cases described in §III can benefit of the additional security
guarantees provided by MQT-TZ with no additional hardware
and without changes to the client’s application code.

We plan to extend this work along the following direc-
tions. Firstly, we intend to extend the MQT-TZ evaluation
and compare against other topic-based publish-subscribe sys-
tems and messaging queues as well as testing in larger-
scale settings with clustered MQTT brokers. Secondly, we
intend to study the energy trade-offs of our system, a key
aspect for edge deployments. Thirdly, we will revise MQT-
TZ architecture to shield in TRUSTZONE some additional
components (e.g., ACLs, the subscription lists). Lastly, we
plan to implement a proof of concept version of MQT-TZ
leveraging alternative software development kits for TRUST-
ZONE such as OPENENCLAVE (https://openenclave.io/sdk/)
and alternative TRUSTZONE-enabled devices (i.e., TRUSTBOX
https://scalys.com/trustbox-industrial/).
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[49] C. Segarra, E. Muntané Calvo, M. Lemay, V. Schiavoni, and R. Delgado-
Gonzalo. Secure stream processing for medical data. In Proceedings of
the 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC’19, 2019.

[50] SeongHan Shin, Kazukuni Kobara, Chia-Chuan Chuang, and Weicheng
Huang. A security framework for MQTT. In Proceedings of the 2016
IEEE Conference on Communications and Network Security (CNS’16),
pages 432–436. IEEE, 2016.

[51] Philip Sparks. The route to a trillion devices. Technical report, ARM,
2017.

[52] G. Tan, T. K. Dao, L. Farmer, R. J. Sutherland, and R. Gevirtz. Heart
rate variability (HRV) and posttraumatic stress disorder (PTSD): A pilot
study. Applied Psychophysiology and Biofeedback, 36(1):27–35, 2011.

[53] Teserakt AG. Is MQTT secure? (A report). https://blog.teserakt.io/2019/
03/04/is-mqtt-secure/, 2019.

[54] The Eclipse Foundation. Eclipse Mosquitto - An open source MQTT
broker. https://mosquitto.org/, 2019.

[55] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton. The digital universe
of opportunities: rich data and the increasing value of the internet of
things. IDC Analyze the Future, 2014.

[56] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. In Proceedings of the
Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EuroCrypt’10), EUROCRYPT’10, pages 24–
43. Springer, 2010.

[57] A. Vijeev, V. Ganapathy, and C. Bhattacharyya. Regulating drones in
restricted spaces. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications, HotMobile ’19, pages
27–32, New York, NY, USA, 2019. ACM.

[58] P. Voigt and A. Von dem Bussche. The EU general data protection
regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer
International Publishing, 2017.

[59] D. Wieers. Dstat: Versatile resource statistics tool. http://dag.wiee.rs/
home-made/dstat/, 2019.

[60] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi. Internet
of things: Survey and open issues of MQTT protocol. In Proceedings

10

https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee
https://github.com/OP-TEE/optee_os/blob/6e9e277f455a70e5b7f59cd7df5da419bc0697f8/lib/libutee/include/tee_api_types.h#L163
https://github.com/OP-TEE/optee_os/blob/6e9e277f455a70e5b7f59cd7df5da419bc0697f8/lib/libutee/include/tee_api_types.h#L163
https://github.com/OP-TEE/optee_os/blob/6e9e277f455a70e5b7f59cd7df5da419bc0697f8/lib/libutee/include/tee_api_types.h#L163
https://www.optee.org
https://optee.readthedocs.io/architecture/secure_storage.html
https://optee.readthedocs.io/architecture/secure_storage.html
https://blog.teserakt.io/2019/03/04/is-mqtt-secure/
https://blog.teserakt.io/2019/03/04/is-mqtt-secure/
https://mosquitto.org/
http://dag.wiee.rs/home-made/dstat/
http://dag.wiee.rs/home-made/dstat/


This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

This is the authors preprint version of the camera-ready article. The definitive version is published in the proceedings of the
2020 39th International Symposium on Reliable Distributed Systems (SRDS 2020).

of the 2017 International Conference on Engineering MIS, ICEMIS’17,
pages 1–6, May 2017.

11


	I Introduction
	II Background
	III Motivating Scenarios
	III-A Smart Building Management
	III-B MedTech for Vital Sings Monitoring

	IV Deployment Scenario & Threat Model
	V The Mqt-Tz System
	V-A Architecture & Component Description
	V-B Implementation Details

	VI Evaluation
	VI-A Micro-benchmarks
	VI-B Macro-benchmarks
	VI-C MedTech in action

	VII Related Work
	VIII Lessons Learned
	IX Conclusion and Future Work

