
This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

MQT-TZ: Secure MQTT Broker for
Biomedical Signal Processing on the Edge

Carlos SEGARRA a,b,1, Ricard DELGADO-GONZALO a and Valerio SCHIAVONI b

a CSEM, Neuchâtel, Switzerland
b Université de Neuchâtel, Neuchâtel, Switzerland

Abstract. Physical health records belong to healthcare providers, but the infor-
mation contained within belongs to each patient. In an increasing manner, more
health-related data is being acquired by wearables and other IoT devices following
the ever-increasing trend of the Quantified Self. Even though data protection reg-
ulations (e.g., GDPR) encourage the usage of privacy-preserving processing tech-
niques, most of the current IoT infrastructure was not originally conceived for such
purposes. One of the most used communication protocols, MQTT, is a lightweight
publish-subscribe protocol commonly used in the Edge and IoT applications. In
MQTT, the broker must process data on clear text, hence exposing a large attack
surface for a malicious agent to steal/tamper with this health-related data. In this pa-
per, we introduce MQT-TZ, a secure MQTT broker leveraging Arm TRUSTZONE,
a popular Trusted Execution Environment (TEE). We define a mutual TLS-based
handshake and a two-layer encryption for end-to-end security using the TEE as
a trusted proxy. We provide quantitative evaluation of our open-source PoC on
streaming ECGs in real time and highlight the trade-offs.

Keywords. wearables, mHealth, secure broker, MQTT, mosquitto, TrustZone

1. Introduction

Personalized health and medicine has the potential of being the next revolution in health-
care. It is also referred as the P4 medicine (Predictive, Preventive, Personalized, and Par-
ticipatory), and provides the opportunity to benefit from more targeted and effective di-
agnoses and treatments [1]. One of the driving forces behind this tendency is the increas-
ing medicalization of wearable technology [2] and mobile health (mHealth) apps [3]. In
order to enable these technologies, complex processing IoT pipelines are gradually be-
ing deployed or repurposed. When the data-in-motion are vital signs, protecting user’s
privacy becomes a topic of crucial importance. Recent data protection regulations (e.g.,
GDPR [4]) stress the importance of protecting sensitive information against malicious
attackers or untrusted cloud providers.

Message Queuing Telemetry Transport (MQTT) [5] is one of the most commonly-
used communication protocols in IoT. In spite of that, it is not included in some of
the most extended Medical-Grade data exchange standards [6,7]. It follows a publish-
subscribe architecture specially designed for environments with limited memory and re-

1Corresponding Author: Carlos Segarra; E-mail: carlossegarragonzalez@gmail.com.

1

https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

duced network bandwidth. In such circumstances, MQTT has proven to be more adapted
to the IoT than classical protocols such as HTTP [8]. In MQTT, a client publishes data to
a topic and the broker forwards it to each client that previously subscribed to it. The pro-
tocol is currently used in a variety of settings: data generation by sensors, pre-processing
on the edge, and forwarding to the cloud. Examples include live heart-rate data [9,10],
smart-grids [11], or building management systems [12]. Most MQTT implementations
support TLS for transport security in the client-broker link, preventing malicious actors
from spoofing application data. However, the broker itself still exposes a great attack
surface [13].

In order to protect the privacy of health-related data, we present MQT-TZ, a secure
implementation of the MQTT broker leveraging Arm TRUSTZONE, a Trusted Execution
Environments (TEE), widely available on edge devices [14]. TRUSTZONE is a security
feature available in recent Arm processors that enables system-wide hardware isolation
for trusted software [15]. Our prototype builds atop mosquitto (https://mosquitto.
org), a popular MQTT broker implementation, and includes persistent storage of client’s
keys in Arm’s tamper-proof secure storage, as well as TEE-protected re-encryption of
application data. These security enhancements make our ecosystem compliant with the
”Services Secure Interface” [6] described by the Personal Connected Health Alliance,
and address several attack vectors listed [7] by the IHE. We also consider linking our
secure broker to a larger storage utility where data-at-rest is encrypted and its origin
authenticated by MQT-TZ.

The paper is organized as follows. In Section 2, we describe the technical architec-
ture and implementation of MQT-TZ. Then, in Section 3, we evaluate its performance
and robustness at processing 1-lead ECGs in real time. Finally, in Section 4 we expose
our main conclusions and propose further lines of research.

2. MQT-TZ: Securing the MQTT Broker

2.1. Architecture & Component Description

TRUSTZONE splits the system in a hardware-protected trusted part (the TEE) and an
untrusted one (also called Rich Execution Environment, or REE). We add an encryp-
tion layer in MQTT’s payload using client-specific keys stored in Arm’s secure storage.
This way, application data is only processed in clear inside the TEE. For the additional
key-provisioning, we redefine the client authentication in the mutual TLS handshake to
prevent the REE from gaining access to clients’ keys.

The overall workflow looks as follows. Data travels two-fold encrypted from the
client to the broker (Fig.1-¶). Once the client access is confirmed, Fig.1-·, the sub-
scribers for the given topic are retrieved and the payload forwarded (Fig.1-¸). Then, en-
crypted data is transferred to the TEE (Fig.1-¹). The origin and destination client keys
are retrieved (º-¼), the payload is re-encrypted, and sent back to the REE (Fig.1-½) and
to the subscriber (Fig.1-¾).

Two-Step Handshake. MQT-TZ defines and uses a two-step handshake that realizes
broker and client authentication with end-to-end encryption from the client to the TEE.
The handshake protocol requires minimal pre-provisioned cryptographic material. The
broker (server in TLS nomenclature) authentication is done through TLS’ handshake,

2

https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://mosquitto.org
https://mosquitto.org

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

supported by default in mosquitto. The client authentication is done through MQTT. It
publishes its symmetric key, encrypted with the broker’s TEE public key, to a specific
write-only topic. This TEE key-pair is generated at device start-up time (secure boot)
and derived from a Hardware Unique Key (HUK).

Figure 1. MQT-TZ Architecture and data flow.

MQT-TZ Message Broker

A

C

L

MQTT

DB

Re-encryption

TA (REE)

Re-encryption TA (TEE)

4 8

5 7

Secure Monitor Mode

Lightweight Secure World Cache

Trusted Application Heap Memory

Cache Page Miss (LRU)6 6
Tamper Proof Secure Storage

1 2
3 9

Trusted Execution
Environment

Rich Execution
Environment

TLS & App.
Layer Encryption

Application Layer Encryption

Data in Clear

Layered Encryption &
Access Control Mechanisms.
Once the initial handshake is fin-
ished, MQT-TZ uses a two-layer
encryption mechanism. First, the
client-broker link is protected
by TLS within MQTT. Second,
MQTT’s payload field is en-
crypted using the clients’ sym-
metric key. Then, data is re-
encrypted in the TEE (explained
next) and sent to destination
over MQTT-TLS. Doing so, we
achieve end-to-end security rely-
ing on TRUSTZONE as a secure
proxy.

Payload Re-encryption.
The core secure functionality implemented in MQT-TZ is the payload re-encryption.
We link MQTT with a Trusted Application (TA) running inside the TEE that transfers
the encrypted data to the Secure World, retrieves the origin and destination keys from
secure storage, and re-encrypts the information. Currently, topic subscription lists and
MQTT metadata are stored in a dedicated database (MQTT DB) in the REE. We plan on
shadowing these structures and keeping them in the TEE.

Lightweight Cache. MQT-TZ embeds a lightweight cache that keeps the most re-
cent keys in the TA’s heap memory, and evicts the least used to persistent secure storage.

2.2. Implementation Details

MQT-TZ is implemented in C. The current version of MQT-TZ adds 400 SLOC to
mosquitto and the TA amounts to 1184 SLOC. The MQT-TZ TA relies on OP-TEE

(https://www.optee.org), an open-source framework with native support for TRUST-
ZONE. Our implementation will be publicly available (https://github.com/mqttz).

Client and Server Authentication. The server-side authentication is done through
vanilla TLS. We deploy MQT-TZ’s secure broker in a device with a static IP ad-
dress. Then, we bound the address to a domain name and use a certificate. We rely on
Let’s Encrypt (https://letsencrypt.org/) to get one and to authenticate the bro-
ker. The client-side authentication uses MQTT as communication layer, and openssl

(v1.1.1a) for cryptographic primitives and operations. The integration with mosquitto

exploits custom callbacks for each packet processing. In addition, we use MQTT Re-
quest/Response (RR) features (since v5) for the client’s key exchange. To control access
and R/W permissions to topics, we use mosquitto’s ACLs.

Trusted Application. We use OP-TEE to implement the payload re-encryption TA.
Code developed within this framework has two parts: (1), a host app that runs in the REE

3

https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://www.optee.org
https://github.com/mqttz
https://letsencrypt.org/

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

Figure 2. Re-encryption TA microbenchmark.

0

20

40

60

80

100

0.9 ms 25 ms 0.1 ms 23 ms 0.2 ms 23 ms 1.2 ms 27 ms 0.4 ms 51 ms 0.3 ms 47 ms 0.4 ms 47 ms 1.3 ms 50 ms

20 B 200 B 2 kB 20 kB 20 B 200 B 2 kB 20 kB
Key in Volatile Memory (REE | TEE) Key in Secure Persistent Storage (REE | TEE)

E
x
e

c
u

ti
o

n
 T

im
e

 (
%

)

retrieve_dec_key decrypt retrieve_enc_key encrypt

and acts as entry point and bridge to the TEE, and (2) a trusted API in the TEE that ex-
poses different functions. MQT-TZ intercepts all MQTT packets being forwarded to the
recipients, and feeds our host app with both client’s IDs, and the encrypted data. We then
perform the payload re-encryption using OP-TEE’s storage and cryptographic libraries.
TRUSTZONE not only provides isolation between worlds, but also between different TAs.
Hence, we use the same secure API to store new keys during the handshake. For the key
retrieval, we plan to implement a small LRU cache to store the most frequently used keys
in the TA’s heap, and the rest in persistent secure storage.

3. Evaluation and Results

In this section, we perform an evaluation of MQT-TZ. First, we benchmark the TA re-
encryption with random data in order to understand the overhead introduced by the re-
encryption; and then, we analyze the CPU and network throughput when monitoring vital
signs in a real setting. For all experiments, we virtualize a Raspberry Pi 3 using QEMU-
V8 (https://www.qemu.org/) running mosquitto v1.6.3 and OP-TEE v3.5.0.

3.1. TA Re-encryption

In Fig. 2, we show the breakdown of the time required to re-encrypt a single block of data
for different sizes. The time is split in the time to retrieve each key (retrieve dec key,
retriev enc key), encrypt, and decrypt. We can observe that AES is two orders of
magnitude slower in the TEE. This is a consequence of OP-TEE not using hardware ac-
celerators in contrast to openssl in the REE. Moreover, we observe sensible slowdowns
when switching from in-memory to secure persistent storage.

3.2. Real-time ECG Processing

In this case, we test the resilience of MQT-TZ at sustaining the workloads that can be
encountered in a hospital. For the experiments, we use the LTMS-S [16] platform de-
veloped by CSEM for the European Space Agency (ESA). In particular, we simulate
50 patients streaming in real-time 1-lead electrocardiograms (ECGs) at a frequency of
321.25 Hz. All ECGs are streamed toward a single MQT-TZ broker. In Fig. 3, we de-
pict the outbound throughput generated by each publisher measured using nethogs

(https://github.com/raboof/nethogs). We observe that at any given time only a
subset of the publishers actually emits data. A single subscriber streams at 350 Bytes/s in
the worst case, and the full collective generates between 3 to 5 kBytes per second. During
the experiment, we recorded using dstat (https://github.com/dagwieers/dstat)
the CPU load at the broker, shown in Fig. 3. We observe that after the initial peak, the
overall CPU usage (both for usr and sys processes) stabilizes at 60%.

4

https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://www.qemu.org/
https://github.com/raboof/nethogs
https://github.com/dagwieers/dstat

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

This is the author’s preprint version of the camera-ready article. The definitive
version is published in the proceedings of the 2020 Medical Informatics Europe

Conference (MIE2020). The final authenticated version is available online at
https://doi.org/10.3233/shti200177

4. Conclusion and Future Work

Figure 3. Workload test: Network through-
put (top) and CPU usage (bottom)

0

15

30

45

0 20 40 60

C
PU

 U
sa

ge
 (%

)

Time (s)

usr sys total

Th
ro

ug
hp

ut
 (B

yt
es

/s
)

Max 75th 50th 25th Min

0
50

100
150
200
250
300
350

Motivated by the lack of secure-
by-design communication protocols
for the Edge, we presented MQT-
TZ, our secure implementation of
the MQTT broker using TRUST-
ZONE and showed its direct applica-
tion in a in-hospital setting. The pro-
posed system is robust and capable
of managing 50 patients in real-time
with a CPU usage of 60%. We plan
to extend this work along the follow-
ing directions. First, we will com-
pare MQT-TZ against other publish-
subscribe protocols and messaging
queues. Second, we will study the
performance overhead of MQT-TZ
when deployed on large-scale scenarios. Finally, we intend to look into the energy foot-
print, an aspect of paramount relevance for edge deployments.

References

[1] G. P. Cumming, “Connecting & collaborating - Healthcare for the 21st century,” in PAHI’2014, 2014.
[2] J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,” Pers. Med., vol. 15, no. 5,

pp. 429–448, 2018.
[3] M.-P. Gagnon, P. Ngangue, J. Payne-Gagnon, and M. Desmartis, “m-Health adoption by healthcare

professionals: A systematic review,” J. Am. Med. Inform. Assn., vol. 23, pp. 212–220, June 2015.
[4] The European Parliment and the Council of the European Union, “Regulation (EU) 2016/679,” 2016.
[5] A. Banks and R. Gupta, “MQTT version 3.1.1,” software, OASIS, Oct. 2014.
[6] Personal Connected Health Alliance, “Fundamentals of medical-grade data exchange,” white paper,

Continua, Sept. 2018.
[7] IHE PCD Technical Committee, “Medical equipment management (MEM): Medical device cyber secu-

rity,” white paper, IHE International, Inc., Oct. 2015.
[8] T. Yokotani and Y. Sasaki, “Comparison with HTTP and MQTT on required network resources for IoT,”

in ICCEREC’2016, pp. 1–6, Sept. 2016.
[9] K. Chooruang and P. Mangkalakeeree, “Wireless heart rate monitoring system using MQTT,” Procedia

Comput. Sci., vol. 86, pp. 160–163, 2016.
[10] C. Segarra, R. Delgado-Gonzalo, M. Lemay, P.-L. Aublin, P. Pietzuch, and V. Schiavoni, “Using trusted

execution environments for secure stream processing of medical data,” in Lect. Notes Comput. Sc.,
vol. 11534, pp. 91–107, 2019.

[11] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet of things platform with microser-
vice architecture,” in FiCloud’2015, pp. 25–30, Aug. 2015.

[12] Y. Lee, H. Hsiao, C. Huang, and S. T. Chou, “An integrated cloud-based smart home management system
with community hierarchy,” IEEE. T Consum. Electr., vol. 62, pp. 1–9, Feb. 2016.

[13] Teserakt AG, “Is MQTT secure? (a report),” 2019.
[14] R. Liu and M. Srivastava, “VirtSense: Virtualize sensing through ARM TrustZone on Internet-of-

Things,” in SysTEX’2018, (New York, NY, USA), pp. 2–7, ACM, 2018.
[15] J. Amacher and V. Schiavoni, “On the performance of ARM TrustZone,” in DAIS’2019, pp. 133–151,

2019.
[16] O. Chételat, D. Ferrario, M. Proença, J.-A. Porchet, A. Falhi, O. Grossenbacher, R. Delgado-Gonzalo,

N. Della Ricca, and C. Sartori, “Clinical validation of LTMS-S: A wearable system for vital signs mon-
itoring,” in EMBC’2015, pp. 3125–3128, 2015.

5

https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177
https://doi.org/10.3233/shti200177

