
Secure Stream Processing for Medical Data

Carlos Segarra1, Enric Muntané1, Mathieu Lemay1, Valerio Schiavoni2, and Ricard Delgado-Gonzalo1

Abstract— Medical data belongs to whom it produces it.
In an increasing manner, this data is usually processed in
unauthorized third-party clouds that should never have the
opportunity to access it. Moreover, recent data protection
regulations (e.g., GDPR) pave the way towards the development
of privacy-preserving processing techniques. In this paper, we
present a proof of concept of a streaming IoT architecture that
securely processes cardiac data in the cloud combining trusted
hardware and Spark. The additional security guarantees come
with no changes to the application’s code in the server. We tested
the system with a database containing ECGs from wearable
devices comprised of 8 healthy males performing a standardized
range of in-lab physical activities (e.g., run, walk, bike). We
show that, when compared with standard SPARK STREAMING,
the addition of privacy comes at the cost of doubling the
execution time.

I. INTRODUCTION

Personalized health and medicine has the potential of
being the next revolution in healthcare. It is also referred
as P4 medicine (Predictive, Preventive, Personalized, and
Participatory), and it provides the opportunity to benefit from
more targeted and effective diagnoses and treatments [1].
To implement this, larger amounts of data and complex
processing pipelines are gradually being deployed, what
generally leads to offloading computation to third-party cloud
providers. When the data-in-motion are vital signs, protecting
user’s privacy becomes a topic of crucial importance. Fur-
thermore, recent data protection regulations (e.g., GDPR [2],
[3]) stress the importance of protecting sensitive information
against malicious attackers or untrusted cloud providers.

The current state of the art for privacy-preserving compu-
tation falls in two big categories: homomorphic encryption
or trusted hardware. Homomorphic encryption (HE) is a
cryptographic scheme that allows evaluating algorithms over
encrypted data without having to decrypt it [4]. In spite
of reducing the trusted computing base (TCB) to zero on
the remote side, HE frameworks are currently prohibitively
slow [5]. On the other hand, we have Trusted Execution En-
vironments (TEE). A TEE is an isolated area of a processor
that grants confidentiality and integrity to the information
therein contained. TEEs are nowadays available in commod-
ity CPUs, namely ARM TRUSTZONE and INTEL R© SGX.
The INTEL R© SOFTWARE GUARD EXTENSIONS (SGX) is a
set of instructions and memory access changes added to the
Intel R© architecture. These instructions enable applications to

1Carlos Segarra, Enric Muntané, Mathieu Lemay, and Ricard Delgado-
Gonzalo are with the Swiss Center for Electronics and Microtechnology
(CSEM), Neuchâtel, Switzerland carlos.segarra@csem.ch

2Valerio Schiavoni is with the Université de Neuchâtel, Neuchâtel,
Switzerland valerio.schiavoni@unine.ch

create hardware-protected areas in their application memory
address space called enclaves [6].

In this paper we present a real-time privacy-preserving
streaming platform for performing cloud computing on live
cardiac data that runs unmodified Spark applications in a
distributed environment, performs critical parts of the com-
putation inside enclaves, and provides end-to-end protection
for users’ data. Without any modification to their applica-
tions’ source code, potential users would instantly benefit
of privacy-preserving computing relying on Intel SGX tech-
nology with limited impact on the performance. The main
contributions of this paper are: (i) a proof of concept for a
privacy-preserving streaming platform for medical data, and
(ii) a study on the overhead introduced by privacy-preserving
processing techniques.

The paper is organized as follows. In Section I, we
introduce the problem we are facing and summarize the
proposed solution. In Section II, we describe our use case. In
Section III, we describe the architecture of the solution. Its
components and materials are introduced in Section IV. The
experiments and results obtained are presented in Section V.
Lastly, in Section VI, we expose our main conclusions and
propose further lines of research.

II. MOTIVATION

To illustrate that the solution presented is feasible and
ready to be deployed, we apply it to a current industry
challenge: the processing of cardiac data in the cloud. Our
use case contemplates a scenario where multiple sensors
are monitoring the cardiac activity of different users, see
Figure 2. There are two main systems used by fitness
enthusiasts for monitoring heart activity: electrocardiograms
(ECG) and photoplethysmograms (PPG). ECG-based sys-
tems measure the heart’s electrical activity over time and

Time (s)

Amplitude (mV)

R0

P1

Q1

S1

T1

R1 R2

gateway://data/rr.csv

t(R1), t(R1) - t(R0)

t(R2), t(R2) - t(R1)

.

.

.

Fig. 1. Schematic representation of an ECG signal showing three
normal beats. A normal electrocardiogram can be broken down in three
waves: a P wave corresponding to the depolarization of the atria, a QRS
complex corresponding to the depolarization of the ventricles and a T wave
corresponding to the repolarization of the ventricle [7]. From an ECG the
sensor extracts and streams the R-peaks’ timestamp and the time elapsed
between them.

ar
X

iv
:1

90
7.

12
24

2v
2

 [
cs

.C
R

]
 3

0
Ju

l 2
01

9

· · · Client m Client

FileSystem Interface

REMOTE UNTRUSTED SERVER

INTEL SGX
CSEM HRV
+ Identity
+ SDNN
+ HRVBands

sensor

eclipse-mqtt

mqtt-subscriber

consumer producer

Fig. 2. Schematic representation of the proposed architecture. (Left) Client-server workflow. An arbitrary number of clients composed of a sensor and a
gateway communicate with a remote untrusted server with INTEL SGX via a FileSystem Interface. The adversarial model assumes a privileged attacker
inside the machine. (Right) Client package breakdown. Each client is, in practice, made up of five different components: a producer and consumer
service that interact with the remote end, a eclipse-mqtt message broker to distribute the newly generated samples and a mqtt-subscriber to
process them, and lastly a sensor that can either be a separate piece of hardware or an artificial DOCKER service.

it is the chosen method by chest-based sensors [8]. PPG-
based systems measure the variation of blood volume over
time using LEDs and photodiodes. Although less precise,
PPGs are the chosen technique by all wrist-based cardiac
monitoring sensors [9].

In our case, we focus on the analysis of the Heart Rate
Variability (HRV) [10], that is, the analysis of the variation
in the time intervals between heartbeats (a.k.a. RR intervals).
The HRV is of utmost importance since it has been shown
to be a predictor for myocardial infarction [11], [12]. We
assume that the extraction of these values is performed by the
sensor. Figure 1 depicts a detailed ECG and the information
streamed from the sensor.

III. ARCHITECTURE

A. System Description

The proposed architecture follows a client-server scheme.
As depicted in Figure 2, the system is composed of a
remote server located in the cluster (or cloud) with access
to INTEL R© SGX and a set of clients distributed among
different locations. In our use-case, each client has two
components: a sensor that monitors cardiac data from a user
and streams the RR intervals together with their timestamps,
and a gateway that aggregates samples and interacts with
the remote end. We impose no restrictions on the type of
sensor and, our current gateway implementation could run,
for instance, on a RASPBERRY PI or a SmartPhone.

On the server, we deployed a modified version of APACHE
SPARK that exploits SGX called SGX-SPARK. SPARK [13]
is a cluster-computing framework used to develop distributed
applications. We implemented the HRV algorithms in Spark’s
binding for SCALA. In particular, we implemented the

SDNN temporal analysis and the spectral analysis (HF, LF,
VLF) [14].

SGX-SPARK [15] is a framework that wraps SCALA’s
compiler and enables unmodified Spark applications to run
critical parts of the processing inside enclaves. In particular,
RR intervals are always processed inside Intel SGX.

The client package is divided in four main components:
(1) a sensor that streams samples at an approximate rate of 1
to 3 Hz (60 to 180 beats per minute); (2) a MQTT 1 message
broker; (3) a subscriber on the gateway that processes new
samples; and (4) a producer and consumer that interact with
the remote end. The link between the gateway and the server
is established over SFTP and between 230 and 690 bytes are
transferred per second. In our implementation, we are using
Eclipse Mosquitto 2 as open source MQTT broker.

B. Threat Model and Known Vulnerabilities

Since the communication between the gateway and the
server is kept protected by encrypting the data and using
a secure transfer protocol (SFTP), our threat model is
equivalent to SGX’s. We assumes the system software to be
completely untrusted (this includes privileged software such
as operating systems, BIOS or virtual machine monitors) [6].
To verify the integrity of the code stored in the server, and
that the code is really running in an enclave, Intel provides a
remote attestation protocol. Once attested, the enclave can be
trusted. INTEL R© SGX (in particular the memory encryption
engine, MEE [16]) is not designed to be an oblivious RAM,
this is, it does not hide memory access patterns. Thus,
an adversary could perform traffic analysis attacks. Other

1https://mqtt.org/
2https://mosquitto.org/

https://mqtt.org/
https://mosquitto.org/

of Clients
in Parallel

Input Size
per Second

Our architecture

110 cli

SPARK
STREAM

ING

225 cli
Our architecture

16 kB/sec

SPARK
STREAM

ING

32 kB/sec

Proposed Spark Streaming

Maximum Number of Clients Served in Parallel
Clients 110 225
Proportion 0.49 1

Maximum Input Load per Second
Load (kB/sec) 16 32
Proportion 0.5 1

Fig. 3. Comparison of the maximum number of clients served in parallel and the maximum input load between the proposed architecture and SPARK
STREAMING. (Left) Proportional bar representation of the values at which each system becomes unstable: it can not process the input received during the
past 10 seconds in under 10 seconds. (Right) Summary table of the same values.

vulnerabilities could be exploited using side-channel [17]
and speculative execution attacks [18], [19]. The proposed
architecture assumes the client package to be completely
trusted. Protecting it lies out of the scope of the project.
However, an approach using ARM TRUSTZONE and OP-
TEE 3 could provide similar security guarantees.

IV. MATERIALS

The proposed architecture has two main components: a
server side equipped with INTEL SGX, and a client package
with a sensor and a gateway. The system’s assessment is also
twofold. Firstly, we run it with data captured from real users
to prove that it works in a real case scenario. Secondly, we
perform stress tests with artificially generated data and evalu-
ate the overhead introduced by privacy-preserving execution.
We are interested in showing that the proposed architecture
is also competitive in other scenarios with more stressful
workloads.

A. Hardware

On the server side we use an Intel R© Xeon R© CPU E3-
1270 v6 @ 3.80 GHz with 8 cores, 64 GiB RAM, and
enclave mode enabled. It is based on UBUNTU 16.04 LTS
(kernel 4.19.0-41900-generic) to support Intel SGX Driver
2.0. For SGX-SPARK we use a development version pro-
vided by the LSDS group.

B. Sensors and data

The used database is obtained from CSEM’s proprietary
wrist located sensors and chest-located dry electrodes [20]. In
particular, cardiac data is obtained from eight healthy males
following a standardized protocol in which they perform a
range of physical activities from sedentary to vigorous [21].
We also augmented the database with simulated data with
equivalent statistical moments than the the latter, adapting to
the demands in workload of the evaluation stress test.

3https://www.op-tee.org/

V. EVALUATION

To evaluate the system we perform a set of different ex-
periments to assess particular characteristics of the proposed
architecture and how do they compare with a normal execu-
tion of SPARK STREAMING, i.e. without INTEL SGX. We are
specially interested in measuring the overhead introduced by
privacy-preserving computations. This is, how do enclaves
affect the system’s latency, or delay, and how it compares in
terms of clients that the platform can serve simultaneously.

Each experiment consists of 20 minutes of stream process-
ing, generating a result sample, or batch, every 10 seconds.
We are interested in measuring the average batch processing
time and the memory footprint, that is, how many resources
is the job consuming. We consider that a configuration is
unstable if the average processing time exceeds 10 seconds.

This is, the streaming platform can not process the amount
of data received during the last 10 seconds within the next
ten seconds. We simulate data overload via two mechanisms:
a single client sending a lot of information per second and
many clients being processed simultaneously. Figure 3 sum-
marizes the results obtained for our architecture and SPARK
STREAMING. In both simulations, Spark is configured to run
one master (or driver) process and one worker process with
2 GB of allocated memory.

For the first set of experiments, we deploy a variable
number of clients, each streaming samples at approximately
1 Hz, and measure at which number each configuration
becomes unstable. The system is able to handle 110 clients
simultaneously whilst SPARK STREAMING is able to handle
225 users in parallel.

The second set of experiments is performed with a single
client, increasing the samples per second the client sends
until each system becomes unstable. The system is able to
process up to 16 kB per second whilst SPARK STREAMING
manages workloads of up to 32 kB per second.

To put it in a nutshell, the system seamlessly performs
computations on untrusted clouds without compromising
user’s data with the constraint of approximately halving
the system performance. This result is, per se, competitive
with other privacy-preserving computing frameworks [22]

https://www.op-tee.org/

but is a major improvement, in fact a novelty, for privacy-
preserving computing frameworks since it is transparent to
the programmer of the final application.

VI. CONCLUSION

In this paper, we have presented a proof of concept of
a streaming platform that grants executions on remote, un-
trusted, servers or clouds with data and code confidentiality
and integrity. It provides end-to-end protection transparently
to the developer since it runs unmodified APACHE SPARK
applications inside INTEL SGX’s enclaves.

We have quantified the impact on overall system per-
formance when protecting health sensitive data from an
untrusted cloud provider. More precisely, when performing
an HRV analysis, it halves the maximum supported work-
load and the maximum number of clients the system can
process simultaneously. We consider the system to be mature
enough to be introduced in a production environment, since
it complies with current data protection regulations whilst
still maintaining a reasonable performance.

A major further step in reducing the Trusted Computing
Base of the overall system would be providing additional
protection to the client package. Given the success of en-
claves, we suggest considering trusted hardware designed
for smaller embedded devices such as ARM TRUSTZONE in
combination with a TEE-TEE point to point secure transport
link such as TALOS [23].

REFERENCES

[1] G. P. Cumming. Connecting & collaborating - Healthcare for the
21st century. In Proceedings of the Second European Workshop on
Practical Aspects of Health Informatics [PAHI], Trondheim, Norway,
2014.

[2] P. Voigt and A. Von dem Bussche. The EU General Data Protection
Regulation (GDPR). Springer, Cham, 2017.

[3] The European Parliment and the Council of the European Union.
Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union, L119:1–88, May
2016.

[4] C. Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st annual ACM symposium on theory of computing
(STOC’09), pages 169–178, 2009.

[5] C. Göttel, R. Pires, I. Rocha, S. Vaucher, P. Felber, M. Pasin, and
V. Schiavoni. Security, performance and energy trade-offs of hardware-
assisted memory protection mechanisms. In Proceedings of the IEEE
37th Symposium on Reliable Distributed Systems (SRDS’18), pages
133–142, October 2018.

[6] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP ’13), pages 1–8, June 2013.

[7] L. S. Lilly. Pathophysiology of heart disease: A collaborative project
of medical students and faculty. Lippincott Williams & Wilkins, 2001.

[8] T. Tamura and W. Chen. Seamless Healthcare Monitoring: Advance-
ments in Wearable, Attachable, and Invisible Devices. Springer, 2018.

[9] J. Parak, A. Tarniceriu, Ph. Renevey, M. Bertschi, R. Delgado-
Gonzalo, and I. Korhonen. Evaluation of the beat-to-beat detection ac-
curacy of PulseOn wearable optical heart rate monitor. In Proceedings
of the 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC’15), pages 8099–8102, 2015.

[10] A. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. Cohen,
Ph. Coumel, E. Fallen, H. Kennedy, and R. E. Kleiger. Heart rate
variability: Standards of measurement, physiological interpretation and
clinical use. Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology. Circulation,
93(5):1043–1065, 1996.

[11] R. E. Kleiger, J. P. Miller, J. Th. Bigger, and A. J. Moss. Decreased
heart rate variability and its association with increased mortality after
acute myocardial infarction. The American Journal of Cardiology,
59(4):256–262, 1987.

[12] J. Th. Bigger, J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, R. E.
Kleiger, and J. N. Rottman. Frequency domain measures of heart pe-
riod variability and mortality after myocardial infarction. Circulation,
85:164–171, February 1992.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing
(HotCloud’10), pages 1–7, 2010.

[14] F. Shaffer and J. P. Ginsberg. An overview of heart rate variability
metrics and norms. Frontiers in Public Health, 5:1–17, September
2017.

[15] F. Kelbert. D3.2 SecureCloud: Specification and Implementation of
Reusable Secure Microservices, December 2017.

[16] S. Gueron. A memory encryption engine suitable for general purpose
processors. IACR Cryptology ePrint Archive, pages 1–14, February
2016.

[17] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard.
Malware guard extension: Using SGX to conceal cache attacks. In
Proceedings of the International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (CoRR’17), pages 3–24,
2017.

[18] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), pages 991–1008, 2018.

[19] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, Th. F. Wenisch, and Y. Yarom.
Foreshadow-NG: Breaking the virtual memory abstraction with tran-
sient out-of-order execution. Technical report, 2018.

[20] O. Chételat, D. Ferrario, M. Proença, J.-A. Porchet, A. Falhi,
O. Grossenbacher, R. Delgado-Gonzalo, N. Della Ricca, and C. Sar-
tori. Clinical validation of LTMS-S: A wearable system for vital
signs monitoring. In Proceedings of the 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC’15), pages 3125–3128, 2015.

[21] R. Delgado-Gonzalo, Ph. Renevey, E. M. Calvo, J. Solà, C. Lanting,
M. Bertschi, and M. Lemay. Human ernergy expenditure models:
Beyond state-of-the-art commercialized embedded algorithms. In
Digital Human Modeling. Applications in Health, Safety, Ergonomics
and Risk Management, pages 3–14, 2014.

[22] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,
and I. Stoica. Opaque: An oblivious and encrypted distributed
analytics platform. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation (NSDI’17), pages
283–298, March 2017.

[23] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, Ch. Priebe,
J. Lind, R. Krahn, Ch. Fetzer, D. Eyers, and P. Pietzuch. TaLoS:
Secure and transparent TLS termination inside SGX enclaves. Imperial
College London, Tech. Rep, 5, 2017.

	I INTRODUCTION
	II MOTIVATION
	III ARCHITECTURE
	III-A System Description
	III-B Threat Model and Known Vulnerabilities

	IV MATERIALS
	IV-A Hardware
	IV-B Sensors and data

	V EVALUATION
	VI CONCLUSION
	References

